Endocrine System

Hormones

Regulation

- Why are hormones needed?
 - chemical messages from one body part to another
 - communication needed to coordinate whole body
 - daily homeostasis & regulation of large scale changes
 - solute levels in blood
 - glucose, Ca++, salts, etc.
 - metabolism
 - growth
 - development
 - maturation
 - reproduction

Regulation & Communication

- Animals rely on 2 systems for regulation
 - endocrine system
 - system of ductless glands
 - secrete chemical signals directly into blood
 - chemical travels to target tissue
 - target cells have receptor proteins
 - slow, long-lasting response
 - nervous system
 - system of neurons
 - transmits "electrical" signal & release neurotransmitters to target tissue
 - fast, short-lasting response

Regulation by chemical messengers

- Neurotransmitters released by neurons
- Hormones release by endocrine glands

Classes of Hormones

- Protein-based hormones
 - polypeptides
 - small proteins: insulin, ADH
 - glycoproteins
 - large proteins + carbohydrate: FSH, LH
 - amines
 - modified amino acids: epinephrine, melatonin
- Lipid-based hormones
 - steroids
 - modified cholesterol: sex hormones, aldosterone

How do hormones act on target cells

- Lipid-based hormones
 - hydrophobic & lipid-soluble
 - diffuse across cell membrane & enter cells
 - bind to receptor proteins in cytoplasm & nucleus
 - bind to DNA as transcription factors
 - turn on genes
- Protein-based hormones
 - hydrophilic & not lipid soluble
 - can’t diffuse across cell membrane
 - bind to receptor proteins in cell membrane
 - trigger secondary messenger pathway
 - activate internal cellular response
 - enzyme action, uptake or secretion of molecules...
Action of lipid (steroid) hormones

1. **Target cell**
2. **Steroid hormone**
3. **DNA**
4. **mRNA**
5. **Protein**
6. **Cytoplasm**
7. **Blood**

- Ex: Secreted protein = Growth factor (hair, bone, muscle, gametes)

Action of protein hormones

1. **Signal**
2. **Signal-transduction pathway**
3. **Protein hormone**
4. **Protein carrier**
5. **Receptor protein**
6. **GTP**
7. **ATP**
8. **G protein**
9. **Enzyme**

- Activates enzyme
- Produces an action

Ex: Action of epinephrine (adrenaline)

1. **Signal**
2. **Epinephrine**
3. **Receptor protein**
4. **Cytosol**
5. **GTP**
6. **ATP**
7. **G protein**
8. **Enzyme**

- Activates enzyme
- Produces a response

Benefits of a 2° messenger system

- **Amplification!**
- **Cascade multiplier!**
- **FAST response!**

Maintaining homeostasis

- **Hormone 1**: Raises body condition
- **Gland**: High
- **Body condition**: Low

Nervous System Control

- **Hypothalamus**: Nervous system control
- **Body temperature**: High
- **Feedback**: Sweat
- **Constricts surface blood vessels**: Low
- **Hypothalamus**: Nervous system control
- **Body temperature**: Low
- **Feedback**: Shiver
- **Constricts surface blood vessels**: High
Nervous & Endocrine systems linked

- **Hypothalamus** = “master nerve control center”
 - nervous system
 - receives information from nerves around body about internal conditions
 - **releasing hormones**: regulates release of hormones from pituitary
- **Pituitary gland** = “master gland”
 - endocrine system
 - secretes broad range of “tropic” hormones regulating other glands in body

Homology in hormones

- What could this tell you about these hormones?
- How could these hormones have different effects?

Regulating metabolism

- **Hypothalamus**
 - TRH = TSH-releasing hormone
- **Anterior Pituitary**
 - TSH = thyroid stimulating hormone
- **Thyroid**
 - produces **thyroxine hormones**
 - metabolism & development
 - bone growth
 - mental development
 - metabolic use of energy
 - blood pressure & heart rate
 - muscle tone
 - digestion
 - reproduction

Goiter
Iodine deficiency causes thyroid to enlarge as it tries to produce thyroxine.

Endocrine System Control
Regulation of Blood Calcium

Female reproductive cycle

Feedback

Effects of stress on a body